A System of Multivariable Krawtchouk Polynomials and a Probabilistic Application
نویسندگان
چکیده
Abstract. The one variable Krawtchouk polynomials, a special case of the 2F1 function did appear in the spectral representation of the transition kernel for a Markov chain studied a long time ago by M. Hoare and M. Rahman. A multivariable extension of this Markov chain was considered in a later paper by these authors where a certain two variable extension of the F1 Appel function shows up in the spectral analysis of the corresponding transition kernel. Independently of any probabilistic consideration a certain multivariable version of the Gelfand–Aomoto hypergeometric function was considered in papers by H. Mizukawa and H. Tanaka. These authors and others such as P. Iliev and P. Tertwilliger treat the twodimensional version of the Hoare–Rahman work from a Lie-theoretic point of view. P. Iliev then treats the general n-dimensional case. All of these authors proved several properties of these functions. Here we show that these functions play a crucial role in the spectral analysis of the transition kernel that comes from pushing the work of Hoare–Rahman to the multivariable case. The methods employed here to prove this as well as several properties of these functions are completely different to those used by the authors mentioned above.
منابع مشابه
A Note on Krawtchouk Polynomials and Riordan Arrays
The Krawtchouk polynomials play an important role in various areas of mathematics. Notable applications occur in coding theory [11], association schemes [4], and in the theory of group representations [21, 22]. In this note, we explore links between the Krawtchouk polynomials and Riordan arrays, of both ordinary and exponential type, and we study integer sequences defined by evaluating the Kraw...
متن کاملReconstruction problems for graphs, Krawtchouk polynomials and Diophantine equations
We give an overview about some reconstruction problems in graph theory, which are intimately related to integer roots of Krawtchouk polynomials. In this context, Tichy and the author recently showed that a binary Diophantine equation for Krawtchouk polynomials only has finitely many integral solution. Here, this result is extended. By using a method of Krasikov, we decide the general finiteness...
متن کاملOn Integral Zeros of Krawtchouk Polynomials
We derive new conditions for nonexistence of integral zeros of binary Krawtchouk polynomials. Upper bounds for the number of integral roots of Krawtchouk polynomials are presented.
متن کاملImage analysis by Krawtchouk moments
In this paper, a new set of orthogonal moments based on the discrete classical Krawtchouk polynomials is introduced. The Krawtchouk polynomials are scaled to ensure numerical stability, thus creating a set of weighted Krawtchouk polynomials. The set of proposed Krawtchouk moments is then derived from the weighted Krawtchouk polynomials. The orthogonality of the proposed moments ensures minimal ...
متن کاملMore zeros of krawtchouk polynomials
Three theorems are given for the integral zeros of Krawtchouk polynomials. First, five new infinite families of integral zeros for the binary (q = 2) Krawtchouk polynomials are found. Next, a lower bound is given for the next integral zero for the degree four polynomial. Finally, three new infinite families in q are found for the degree three polynomials. The techniques used are from elementary...
متن کامل